If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15y^2-30y=0
a = 15; b = -30; c = 0;
Δ = b2-4ac
Δ = -302-4·15·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-30}{2*15}=\frac{0}{30} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+30}{2*15}=\frac{60}{30} =2 $
| (19x+4)=80 | | B^2-10b-74=5 | | 5x+5=-5x+45 | | (5x+10)=(6x+1)=180 | | (x+125)=120 | | 0,3(0,4x+0,2)+0,36=3,42 | | 3(a-8)=21 | | 7(x-7)+6x=-38+2x | | x¡x3=4 | | (q-3)*6=30 | | (11x+3)=80 | | 15x+4x=10x-6 | | 10x+35-5x=-14-2x | | (11x+3)=(11x+3)=180 | | (11x+3)(11x+3)=180 | | (6/5x+10)+(2x-13)=180 | | -14x+8x=2(-7-4x) | | 0.06x-0.02x=0.12 | | (11x+3)(80)=180 | | (6/x)=63 | | -4=-20+8x | | 5.8x-5.5+8x=8.8x-27.5 | | 10k(k+3)=3k-5 | | 3x+6-7x=20-4x | | 7r=3=31 | | 9d+2d-3d-4=5d | | 1/1d-8=3 | | 20=-10+7m | | 9x+3(x-3)=13+10x | | -20+8x=-3 | | 8(x-6)+6x=62+4x | | 5(x−4)+8x=13x−20 |